IDENTIFICATION OF INTESTINAL MICROBES IN CHILDREN WITH DIARRHEA ANDNON-DIARRHEA USING POLYMERASE CHAIN REACTION / ELECTROSPRAY IONIZATION-MASS SPECTROMETRY (PCR / ESI-MS)

Teguh Sarry Hartono¹, Dewi Murniati², Andi Yasmon³, Lucky H Moehario³

¹Infectious Disease HospitalProf Dr Sulianti Saroso, Microbiology Resident–Departement of Microbiology, Faculty of Medicine, University of Indonesia. ²Infectious Disease Hospital Prof Dr Sulianti Saroso, ³Department of Microbiology, Faculty of Medicine, University of Indonesia.

Abstract :Microbiota present in human intestinal are diverse, and imbalance in composition of intestinal flora may cause diarrhea. This study aimed to obtain a profile of intestinal bacteria in children with and without diarrhea and assess their presence with incidence of diarrhea. An analitical descriptive with cross sectional design study was carried out. A stool specimen was collected from each children of 2-12 years old with and without diarrhea who lived in North Jakarta. DNA extraction was performed prior to detection of microbes using Polymerase Chain Ceaction/Electrospray Ionization-Mass Spectrometry.

Eighty stool specimens consisted of 33 and 47 specimens from children with and without diarrhea were included in the study. Thirty single and 6 multiple matches were detected in 30 specimens of the diarrhea group; 28 single and 8 multiple matches were found in 34 specimens of the non-diarrhea. *Escherechiacoli* and *Klebsiella pneumonia* were predominant in both groups. Firmicutes, Proteobacteria and Bacteroidetes were detected in the diarrhea group, while Actinobacteria, Proteobacteria and Verrucomicrobia were in the non-diarrhea. The relationship of incidence of diarrhea and the present of enteropathogens in the stool was not significant, however, there was a strong correlation of the risk of suffering diarrhea due to the presence of enteropathogens (OR = 0.724 with 95%, CI: 0.237-2.215).

In conclusion, most bacteria detected in both groups were similar, nonetheless, Actinobacteria was present only in the non-diarrhea. The chance to have diarrhea was higher when enteropathogen was detected in the stool.

Keywords:Gut microbiota, diarrhea, PCR/ESI-MS

Correspondence : dr. Teguh Sarry Hartono, Sp.MK Infectious Disease Hospital Prof Dr Sulianti Saroso, Jalan Baru Sunter Permai Raya, Jakarta 14350 Email : bagas.afyad@gmail.com

INTRODUCTION

Gastrointestinaltract (GIT) is themost heavily colonized organ; the colon alone contains over 70% of all the microbes in body^{1,2}.The the human intestinal microbiota composed of more than 1000 species³. Almost all of these species (98%) belonged to only four bacterial phyla i.e. Firmicutes (64%), Bacteroidetes Proteobacteria (23%). (8%). and Actinobacteria (3%)⁴. Other species such members Verrumicrobia, as of Fusobacteria and Cyanobacteria exist in small amount³. Microbes in small intestine were enriched with the Bacilliclass of Firmicutes and Actinobacteria, while in **Bacteroidetes** and colonthe Lachnospiraceae, family of Firmicutes

were more prevalent⁴.Infection will affect on interaction among microbiota and trigger inflammation responses, and consequently influence the composition of intestinal microbiota⁵. Lupp C et al, 2007 reported that intestinal mucosal inflammatory process due to infection altered the residentobligate anaerobic bacteria and triggered excessive growth of Enterobacteriaceae commensal to become pathogenic⁵.

A variety of approacheswhich include full-length 16S rRNA sequencing⁶, denaturing gradient gel electrophoresis by Zoetendal et al⁷, and fluorescent insitu hybridization by Franks et al⁸had been used in the study of intestinal microbial communities. Further, Polymerase Chain coupled with Electrosprav Reaction Ionization/Mass Spectrometry (PCR/ESI-MS), a technology based on PCR technique, and dispersion technology of electro ionization mass spectrometry, has been utilized for a complete identification of a largenumber of microorganisms^{9,10}. It has a capability to identy multiple organism present in a sample up to species level simultaneously without prior cultivication^{9,11,12}.

In this studv we emploved the PCR/ESI-MS identify to intestinal microbes from stools of children aged 2-12 years with and without diarrhea in Jakarta, and analyse their relationship to incidence of diarrhea. Such information will be valuablefor the development of management of diarrhea in the context of intestinal microbial balance.

MATERIALS AND METHODS

Clinical specimens

The research was an analitical descriptive study with cross sectional design. Stool samples were collected from September 2012 to December 2012. Diarrhea samples were collected from out patients in Infectious Diseases Hospital (IDH) Prof Dr Sulianti Saroso and primary health centers highlighted the close relation area of study population in North Jakarta, Indonesia. Non diarrhea samples were collected from healthy children in toddler classes and kindergartens in the same area as mentioned above. The samples were stored at 4°C for not more than 24 hours and immediatelv transported to laboratory using special coolbox. All samples were stored at -70°C until further process. Inclusion criteria for diarrhea sample were children aged 2-12 vear which had an episode of acute diarrhea according to WHO criteria¹³ and has not received antibiotic.For nondiarrhea sample, were children aged 2-12 years, without episodes of diarrhea. This study was approved by Ethical Committee of Faculty of Medicine, University of Indonesia.

DNA extraction

Total DNA was extracted from 180-220 mg solid stool or 200 μ l liquid stool. The extraction was performed by using QIAamp® DNA Stool Mini Kit according to the manufacturer's instructions with 200 μ l of the elution. The elution was stored at - 70°C until processed.

PCR-ESI/MS assay

Prior to PCR-ESI/MS, inhibitor in the samples were analized by conventional PCR. PCR-ESI/MS was performed by using PLEX-ID Broad Bacteria panel in accordance with manufacture's instruction. The data treshold is 0.85 confidence, in that less than 0.85 were reported uninterpratable¹⁴.

Statistical analysis

Statistical analysis was performed by using SPSS ver 17 software. The relationship between entero pathogens and diarrhea cases was done using Chisquare test with a P-value of < 0.05 was considered significant. The risk relationship (Odds ratio) between those two was also measured.

RESULT

1. Subjects profiles

Overall 80 subjects was obtained in accordance with the inclusion criteria, consisted of 33 children who had diarrhea (diarrhea subjects) and 47 children who did not have diarrhea (non-diarrheal subjects). Diarrhea subjects consisted of 24 boys and 9 girls with an age range of 2 years to 9 years and the median age of 3 years. While the non-diarrheal subjects consisted of 27 boys and 20 girls with an age range of 2 years 3 months to 11 years with a median age of 4 years and 4 months.

2. PLEX-ID result

PLEX-ID psitive detection means that the processor PLEX-ID reads one or more microorganisms with a Q score > 0.85 in accordance with the spectrometer database PLEX-ID. If more than one bacteria detected in one sample with a different Q score, means that there is more than one bacteria that has the same opportunities as the detected bacteria. PLEX-ID detection would give three kindsof result, as showed in Figure 1.

Of 33 samples in diarrhea groupshowed the presence of 30 single matchbacteria and 6 multiple matches bacteria, while the 3 other samples showed no detectable bacteria. In the nondiarrhea group (47 samples) showed 28 single bacteria, 8 multiple matches and 13 samples showed no detectable bacteria.

3. Detection of bacteria in samples

Table 2 shows Escherechia coli dominated the diarrhea group, followed by Klebsiella pneumonia, both from the phylum Proteobacteria. Another species were Campylobacter jejuni, Acidovorax avenae and Aquaspirillum gracile, all from Proteobacteria, while Staphylococcus Clostridium epidermidis. perfringens, Streptococcus vestibularfrom Firmicutes and Prevotella albensisfrom Bacteroidetes.

The non-diarrhea group also dominated Echerechia *coli*and Klebsiella by Another Protobacteria pneumonia. detected was Escherichia fergusonii. Additionally it also detected the presence of Actinobacteria (Bifidobacterium longum) Verrucomicrobia (Akkermansia and muciniphila).

The diversity ofbacteria detected in the diarrhea group (12 of 30 samples) was more than in non-diarrheal group (5 of 28).Figure 2 shows Firmicutes and Bacteroidetes were only detected in diarrhea group, while Actinobacteria and Verrumicrobia were only detected in non-diarrhea group. Proteobacteria was detected in both groups by the number of samples in non diarrhea more than in diarrhea group (25 vs. 24).

The results of multiple matches were dominated by clusters of *Escherichia coli / Shigella flexneri / Shigella sonnei* in each sample group, 4 samples (D02, D13, D14 and D33) in the diarrhea group, and 4 samples (S10, S17, S23 and S38) in the non diarrhea group. Sample D11, D33 and S11 were also detected single match bacteriai. *Streptococcus sp* on D11, *Aquaspirillum gracile* species on sample D33, and *Vibrio sp*. on sample S1 (Table 3).

In this study, enteropathogens were determined using the assumption that the organisms identified using PLEX-ID were organisms known as enteropathogens. In single match, they were *Campylobacter jejuni*, *Clostridium perfringens* and *E. coli*; in multiple matches, they were *Shigella spp* and *Vibrio spp*. Table 4 shows that of

all cases with enteropathogens, 48.2% (27/56) had diarrhea. While in the cases with non-enteropathogens, which had diarrhea was 56.5% (9/16). Using Chisquare test gave P= 0.571. It means there is no significant relationship between enteropathogens with the incidence of diarrhea.Odds ratio is used to see the strength of the relationship between the incidentof diarrhea by enteropathogens (OR 0,724 [95% CI: 0,237-2,215]). This means that the chance of having diarrhea caused by enteropathogens was 0.724 fold than by non-enteropathogen.

DISCUSSION

This study was conducted in four health centers and one hospital in North Jakarta. The health centers were selected on the basis of the distance between the sites, which ranges from 4 km to IDH, to facilitate sample collection. In addition, it was assumed homogenization of social, economic, environmental and climate of the subjects. Specimens obtained were placed in a cooler box with temperatures around 8°C before transfer to a collection point in IDH on the day or the next day. From the published literature, stool specimens can be stored at 2-8°C prior to processing¹⁵.

Of the 33 diarrhea subjects, there were 24 boys and 9 girls with an age range of 2 years to 9 years. This is in accordance with the Basic Health Survey Indonesia in 2007 that claimed the prevalence of diarrhea in boys was higher than girls, as well as the prevalence by age group ie age of 24-48 monthshad a higher prevalence than the age of 48 months upwards¹⁶.

The use of PLEX - ID of the faecal samples directly, as far as we know just recently conducted in this study. In previous studies on blood culture, the suitability of the results obtained at the species level by standard methodswas 86.75 % (n = 234)⁹, while from clinical isolates was 74% (n = 156) identified appropriately, with only 9 % were incorrectly identified¹⁷. In this study, due to not using the comparison method, the results of which can be expressed, was obtained 80 % (64 of 80)

detected the presence of bacteria, with 14 of 64 samples detection results were the result of multiple matches (Table 3). The detection results can not be distinguished further thusreported as a cluster (M. Rost, personal communication, April 12, 2013)¹⁸. Of the 14 multiple matches samples, dominated by a cluster of *Escherichia coli* and *Shigella sp*. This happens due to *E. coli* and *Shigella* is a bacterial species with close ties phylogenic¹⁷.

Escherechia coli is the dominant bacteria in the gastrointestinal tract[19].It is showed in both groups of the study that most of bacteria detectedwere E. coli. Detection of Campylobacter jejuni and Shiaella bovdii which are enteropathogens, in the diarrhea group, distinguish diversity detection results with non-diarrhea group. Despite the similar study with different detection methods by Bodhidatta conducted (2010) in Thailand found that Campvlobacter and Shigellawere also found in non-diarrheal samples²⁰.

Moreover, it also detected the presence of the Aquaspirillum gracilewhich have a new name as Hylemonella gracilis. This bacterium is commonly found in aquatic ecosystems²¹. Other bacteria detected in diarrhea wasAcidovorax the group avenae. This bacterium is a Gramnegative rod bacteria, not pigmented and do not ferment lactose . Usually found in soil and water, as well known as plant pathogens. There are case reports stating that the bacteria associated with the onset of catheter- related sepsis²². Although very rare, the role of environmental bacteria which are not usually found associated with diarrhea should be evaluated and studied in the future.

All bacteria that were detected in the group of non-diarrhea is normal intestinal flora. Akkermansia muciniphila colonizes in the intestinal mucosal lining and amounted to 3-5 % of the entire community of bacteria²³. Bifidobacterium intestinal species was intestinal commensal bacteria the associated with synthesize of compounds that affect a human. B.longum express serine protease inhibitor which plays а role in the function of immunomodulator²⁴.

The non diarrhea group, was not detected pathogen bacteria, such as *Campylobacter sp* and *Shigella sp*. While in the diarrhea group, no detection of probiotic bacteria that play a role in maintaining immunological conditions of children. There may be an imbalance in the microbiota of the gastrointestinal tract of children with diarrhea than non diarrhe, although it is more confirmed when the number of samples involved in this study is greater.

Detection of *E.coli* and *K.pneumonia* in both groups of samples as most bacteria detected, and the similarity in the results of multiple matches, implies similarities of the intestinal microbiota in the subjects studied. Likely, this is due to the similarity of subject demographics, which causes environmental, habits and eating patterns have similarities. In a study conducted by Yatsunenko et al (2012) stated that differences in cultural tradition also affect food, exposure to pets and livestock, and manyother factors that could influence from where how and gut а microbiota/microbiome isacquired²⁵.

The dominant phyla in diarrhea and non-diarrhea group was Proteobacteria. Bacterial phyla were only detected in diarrhea group were Firmicutes and Bacteroidetes whereas that was onlv found in non-diarrheal group were Actinobacteria and Verrumicrobia. The composition of those bacterial phyla are intestinal microbial composition^{3,4}. In this study, analysis of the intestinal microbial composition were obtained from faecal samples only describe the intestinal microbial composition in general and do not describe the composition of intestinal microbes on the anatomical location. That is because most of the results obtained in each sample only one bacterium and to be able to know the different microbial composition at each anatomical location, samples should be obtained from the anatomical locations, such as the research conducted by Frank et al⁴, Monstein et al[26] and Morteau et al²⁷.

Few studies noted that *E. coli, Campylobacter jejuni, Shigella spp* and *Vibrio spp* as a cause of diarrhea in children^{15,20,28}, while *Clostridium perfringens* is known to cause food

gastroenteritis^{29,30} poisoning causes Investigation of pathogenic strains of E. coli, was not included in the study, thus the analysis it is to be assumed that all E. *coli* detected as a pathogen. In the study the relationship between enteropathogens and diarrhea incidence is not significant (P = 0.571). There are two possibilities that support this statistical analysis: (1) all E. coli detected (diarrhea = 18 and nondiarrhea = 21) were considered as enteropathogens without any investigation of pathogenic strains, (2) the calculation also includes multiple matches that likely contributed to the statistical analysis. The strength of the relationship between enteropathogens and diarrhea in a clinical need to be analyzed with the case-control design, using odds ratio. OR values obtained were 0.724 (95% CI: 0.237-2.215). It means there is a strong correlation between enteropathogens with the incident of diarrhea.

Limitation of study was the results of PCR-ESI/MS detection while not giving an overview of interaction between microbiota and enteropathogens populations in nondiarrhea and diarrhea children, but provide results that enteropathogens found only in cases of diarrhea. These limitations can still be overcome by further research, one of which is a comparison with other detection methods.

CONCLUSION

Bacteria detected in the diarrhea group were more diverse than in the nondiarrheagroup and similarity in the pattern of most detected bacteria in both sample groups. Escherichia coli and Klebsiella pneumoniae were two most detected bacteria in both groups, suggest the gut influenced microbiota was bv environmenta, habits and eating patterns. One of the well known probiotic bacteria i.e. Bifidobacterium longum were found only in non diarrhea group. Likely the chance of children with enteropathogen detected in the stool would have diarrhea 0.724 fold more than children with no enteropathogen detected.

REFERENCES

- 1. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010;90:859-904
- Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837-48
- 3. Sommer F, Backhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 2013;11:227-38.
- Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR.Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl AcadSci U S A 2007;104:13780-5
- 5. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007;2:204.
- 6. Eckburg P, Bik E, Bernstein C, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science 2005:1635-8.
- 7. Zoetendal EG. von Wright Α, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM, Mucosaassociated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 2002:68:3401-7.
- Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with groupspecific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1998;64:3336-45

- Kaleta EJ, Clark AE, Johnson DR, Gamage DC, Wysocki VH, Cherkaoui A, et al. Use of PCR coupled with electrospray ionization mass spectrometry for rapid identification of bacterial and yeast bloodstream pathogens from blood culture bottles. J ClinMicrobiol 2011;49:345-53.
- Ecker DJ, Sampath R, Blyn LB, Eshoo MW, Ivy C, Ecker JA, et al. Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl AcadSci U S A 2005;102:8012-7.
- 11. Brinkman CL, Vergidis P, Uhl JR, Pritt BS, Cockerill FR, Steckelberg JM, et al. PCR-electrospray ionization mass spectrometry for direct detection of pathogens and antimicrobial resistance from heart valves in patients with infective endocarditis. J Clin Microbiol 2013;51:2040-6.
- 12. Jacob D, Sauer U, Housley R, Washington C, Sannes-Lowery K, Ecker DJ, et al. Rapid and highthroughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology. PLoS One 2012;7:e39928
- 13. WHO. Diarrhoeal disease. In: World Health Organization Fact Sheet 2009.
- 14. Inc AM. PLEX-ID System Customer Training Guide. In; 2011.
- Oyofo B, Subekti D, Tjaniadi P, Machpud N, Komalarini S, Setiawan B. Enteropathogen associated with acute diarrhea in community and hospital patients in Jakarta, Indonesia. FEMS Immun and Med Microbiol 2002:139-46.
- Kementerian Kesehatan RI. Situasi diare di Indonesia. Buletin Jendela Data &Informasi Kesehatan; 2011.
- 17. Sampath R, Mulholland N, Blyn LB, Massire C, Whitehouse CA, Waybright N, et al. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry. PLoS One 2012;7:e36528

- 18. Rost M. PLEX-ID enquiries from Indonesia. In: Meulila F, ed.; 2013.
- Bannister B, Gillespie S, Jones J. Infection Microbiology and Management 3rd ed. Massachusetts: Blackwell Publishing; 2006.
- 20. Bannister B, Gillespie S, Jones J. Infection Microbiology and Management 3rd ed. Massachusetts: Blackwell Publishing; 2006.
- Pawlowski D, Raslawsky A, Siebert G, Metzger D, Koudelka G, Karalus R. Identification of *Hylemonella gracilis* as an Antagonist of *Yersinia pestis* Persistence J BioterrBiodef S3:004 2011:doi:10.4172/2157-526.
- 22. Malkan AD, Strollo W, Scholand SJ, Dudrick SJ. Implanted-port-catheterrelated sepsis caused by *Acidovorax avenae* and *methicillin-sensitive Staphylococcus aureus*. J ClinMicrobiol 2009;47:3358-61.
- 23. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between *Akkermansia muciniphila* and intestinal epithelium controls dietinduced obesity. Proc Natl AcadSci U S A 2013;110:9066-71.
- 24. Buffie CG, Pamer EG. Microbiotamediated colonization resistance against intestinal pathogens. Nature reviews Immunology 2013;13:790-801.
- 25. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.
- 26. Monstein HJ, Tiveljung A, Kraft CH, Borch K, Jonasson J. Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pyloriassociated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA

sequence analysis. J Med Microbiol 2000;49:817-22.

- Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 2001;67:4939-42.
- 28. Buktiwetan P, Surjawidjaja J, Salim O,Aidilifit M, Lesmana M. Diarebakterial: etiologi dan kepekaan Antibiotika di

dua Pusat Kesehatan Masyarakat di Jakarta. Jkedokter Trisakti 2001;20:57-65.

- 29. Baumgardner DJ. Soil-related bacterial and fungal infections. Journal of the American Board of Family Medicine:JABFM 2012;25:734-44.
- 30. Haagsma J. Pathogenic anaerobic bacteria and the environment. Rev Sci Tech 1991;10:749-64.

Figure

acteria	Detected Microbe	Q Score	Level
	Escherichia coli	0.95	178
nalysis Results	Reference Database: \$1.4.1.0-A6.346	3.390.305.1-IVD01_6.21.2	2.16.1p1
acteria	Detected Microbe	Q Score	Level
	(Multiple Matches)	0.93	276
	Escherichia coli		
	Shigella flexneri		
	Shigella sonnei		
	Aquaspirillum gracile	0.85	86826
nalysis Results	Reference Database: S1.4.1.0-A6.346	.390.305.1-IVD01_6.21.22	2.16.1p1
acteria	Detected Microbe	Q Score	Level
actoria			

Figure 1. PLEX-ID result sheet which shows the detection of bacteria, with each having Q-score and the different levels (arrow).**a**.Shows the detection of a single bacterium, **b**.Shows the detection of the bacteria, and bacterial detection with the results of multiple matches and **c**. Shows no detectable.

Figure 2. Phyla comparison chart based on the number of species bacteria detected in a sample group of diarrhea and non-diarrhea.

Tables

Table 1. Types of PLEX-ID detection results

	Detection of ba	No dotoctable		
	Single match*	Multiple matches detection	bacteria	
Diarrhea (n =33)	30	6	3	
Non diarrhea (n =47)	28	8	13	
Total (n=80)	58	14	16	

Single match means detection of bacteria in sample with definitive species name, it can be a multiple (more than one bacteria detected) or together with multiple matches detection.

Table 2. Bacteri detected in samples group diarrhea and non-diarrhea

Bacteria in	Number	Family	Phylum	Bacteria in non	Number	Family	Phylum
diarrhea	of	-	-	diarrhea	of	-	-
samples	samples			samples	samples		
Escherechia	18	Enterobacteriaceae	Proteobacteria	Escherechia	21	Enterobacteriaceae	Proteobacteria
coli				coli			
Klabsiella	2	Enterobacteriaceae	Proteobacteria	Klabsiella	3	Enterobacteriaceae	Proteobacteria
pneumonia				pneumonia			
Prevotella	1	Bacteroidaceae	Bacteroidetes	Bifidobacterium	2	Bifidobacteriaceae	Actinobacteria
albensis				longum			
Staphylococ	1	Straphylococcaceae	Firmicutes	Eschenchia	1	Enterobacteriaceae	Proteobacteria
cus				fergusonii			
epidermidis							
Eubacterium	1	Eubacteriaceae	Firmicutes	Akkermansia	1	Verrucomicrobiaceae	Verrucomicrobia
rectale				muciniphila			
Clostnium	1	Clostriadiaceae	Firmicutes				
perfringens		_					
Streptococcu	1	Streptococcaceae	Firmicutes				
s vestibularis							
Streptococcu	1	Streptococcaceae	Firmicutes				
s sp		. .					
Acidovorax	1	Comamonadaceae	Proteobacteria				
avenae		A					
Aquapinillum	1	Comamonadaceae	Proteobacteria				
gracile		A					
Campylobact	1	Campylobacteraceae	Proteobacteria				
er jejuni							
Shigella	1	Enterobacteriaceae	Proteobacteria				
boydii							

Table 3. The results of multiple matches					
Diarrhea Sample code	Bacteria	Non diarrhea Sample code	Bacteria		
D02	E.coli/Shigella flexneri/S.sonnei	S10	E.coli/Shigella flexneri/S.sonnei		
D11	E.coli/Shigella dysenteriae	S11	Vibrio proteolyticus/Vibrio sp.		
D13	E.coli/Shigella flexneri/S.sonnei	S14	E.coli/Escherichia coli 0157:not H7/Shigella sonnei		
D14	E.coli/Shigella flexneri/S.sonnei	S17	E.coli/Shigella dysenteriae		
D15	E.coli/Escherichia coli 0157:not H7/Shigella boydii/Shigella sonnei	S23	E.coli/Shigella flexneri/S.sonnei		
D33	E.coli/Shigella flexneri/S.sonnei	S26	E.coli/Shigella flexneri/S.sonnei		
		S38	E.coli/Shigella flexneri/S.sonnei		
		S46	E.coli/Escherichia coli 0157:not H7/Shigella sonnei		

Table 4. Cross tabulation between entropathogen and diarrhea incidence				
		Enteropa	thogen	
		+	-	Iotal
diarrhea	+	27	9	36
	-	29	7	36
Total		56	16	72